jax.scipy.stats.gaussian_kde#
- class jax.scipy.stats.gaussian_kde(dataset, bw_method=None, weights=None)[source]#
Gaussian Kernel Density Estimator
JAX implementation of
scipy.stats.gaussian_kde.- Parameters:
dataset (Any) – arraylike, real-valued. Data from which to estimate the distribution. If 1D, shape is (n_data,). If 2D, shape is (n_dimensions, n_data).
bw_method – string, scalar, or callable. Either “scott”, “silverman”, a scalar value, or a callable function which takes
selfas a parameter.weights (Any) – arraylike, optional. Weights of the same shape as the dataset.
Methods
__init__(dataset[, bw_method, weights])evaluate(points)Evaluate the Gaussian KDE on the given points.
integrate_box(low_bounds, high_bounds[, maxpts])This method is not implemented in the JAX interface.
integrate_box_1d(low, high)Integrate the distribution over the given limits.
integrate_gaussian(mean, cov)Integrate the distribution weighted by a Gaussian.
integrate_kde(other)Integrate the product of two Gaussian KDE distributions.
logpdf(x)Log probability density function
pdf(x)Probability density function
resample(key[, shape])Randomly sample a dataset from the estimated pdf
set_bandwidth([bw_method])This method is not implemented in the JAX interface.
tree_flatten()tree_unflatten(aux_data, children)Attributes
dnneffdatasetweightscovarianceinv_cov