jax.numpy.zeros#
- jax.numpy.zeros(shape, dtype=None, *, device=None, out_sharding=None)[source]#
Create an array full of zeros.
JAX implementation of
numpy.zeros().- Parameters:
shape (Any) – int or sequence of ints specifying the shape of the created array.
dtype (str | type[Any] | dtype | SupportsDType | None) – optional dtype for the created array; defaults to float32 or float64 depending on the X64 configuration (see Default dtypes and the X64 flag).
device (Device | Sharding | None) – (optional)
DeviceorShardingto which the created array will be committed. This argument exists for compatibility with the Python Array API standard.out_sharding (NamedSharding | PartitionSpec | None) – (optional)
PartitionSpecorNamedShardingrepresenting the sharding of the created array (see explicit sharding for more details). This argument exists for consistency with other array creation routines across JAX. Specifying bothout_shardinganddevicewill result in an error.
- Returns:
Array of the specified shape and dtype, with the given device/sharding if specified.
- Return type:
Examples
>>> jnp.zeros(4) Array([0., 0., 0., 0.], dtype=float32) >>> jnp.zeros((2, 3), dtype=bool) Array([[False, False, False], [False, False, False]], dtype=bool)