jax.numpy.linalg.matmul#
- jax.numpy.linalg.matmul(x1, x2, /, *, precision=None, preferred_element_type=None)[source]#
Perform a matrix multiplication.
JAX implementation of
numpy.linalg.matmul().- Parameters:
x1 (ArrayLike) – first input array, of shape
(..., N).x2 (ArrayLike) – second input array. Must have shape
(N,)or(..., N, M). In the multi-dimensional case, leading dimensions must be broadcast-compatible with the leading dimensions ofx1.precision (lax.PrecisionLike) – either
None(default), which means the default precision for the backend, aPrecisionenum value (Precision.DEFAULT,Precision.HIGHorPrecision.HIGHEST) or a tuple of two such values indicating precision ofx1andx2.preferred_element_type (DTypeLike | None) – either
None(default), which means the default accumulation type for the input types, or a datatype, indicating to accumulate results to and return a result with that datatype.
- Returns:
array containing the matrix product of the inputs. Shape is
x1.shape[:-1]ifx2.ndim == 1, otherwise the shape is(..., M).- Return type:
See also
jax.numpy.matmul(): NumPy API for this function.jax.numpy.linalg.vecdot(): batched vector product.jax.numpy.linalg.tensordot(): batched tensor product.Examples
Vector dot products:
>>> x1 = jnp.array([1, 2, 3]) >>> x2 = jnp.array([4, 5, 6]) >>> jnp.linalg.matmul(x1, x2) Array(32, dtype=int32)
Matrix dot product:
>>> x1 = jnp.array([[1, 2, 3], ... [4, 5, 6]]) >>> x2 = jnp.array([[1, 2], ... [3, 4], ... [5, 6]]) >>> jnp.linalg.matmul(x1, x2) Array([[22, 28], [49, 64]], dtype=int32)
For convenience, in all cases you can do the same computation using the
@operator:>>> x1 @ x2 Array([[22, 28], [49, 64]], dtype=int32)