jax.numpy.correlate#
- jax.numpy.correlate(a, v, mode='valid', *, precision=None, preferred_element_type=None)[source]#
Correlation of two one dimensional arrays.
JAX implementation of
numpy.correlate().Correlation of one dimensional arrays is defined as:
\[c_k = \sum_j a_{k + j} \overline{v_j}\]where \(\overline{v_j}\) is the complex conjugate of \(v_j\).
- Parameters:
a (ArrayLike) – left-hand input to the correlation. Must have
a.ndim == 1.v (ArrayLike) – right-hand input to the correlation. Must have
v.ndim == 1.mode (str) –
controls the size of the output. Available operations are:
"full": output the full correlation of the inputs."same": return a centered portion of the"full"output which is the same size asa."valid": (default) return the portion of the"full"output which do not depend on padding at the array edges.
precision (lax.PrecisionLike) – Specify the precision of the computation. Refer to
jax.lax.Precisionfor a description of available values.preferred_element_type (DTypeLike | None) – A datatype, indicating to accumulate results to and return a result with that datatype. Default is
None, which means the default accumulation type for the input types.
- Returns:
Array containing the cross-correlation result.
- Return type:
See also
jax.scipy.signal.correlate(): ND correlationjax.numpy.convolve(): 1D convolution
Examples
>>> x = jnp.array([1, 2, 3, 2, 1]) >>> y = jnp.array([4, 5, 6])
Since default
mode = 'valid',jax.numpy.correlatereturns only the portion of correlation where the two arrays fully overlap:>>> jnp.correlate(x, y) Array([32., 35., 28.], dtype=float32)
Specifying
mode = 'full'returns full correlation using implicit zero-padding at the edges.>>> jnp.correlate(x, y, mode='full') Array([ 6., 17., 32., 35., 28., 13., 4.], dtype=float32)
Specifying
mode = 'same'returns a centered correlation the same size as the first input:>>> jnp.correlate(x, y, mode='same') Array([17., 32., 35., 28., 13.], dtype=float32)
If both the inputs arrays are real-valued and symmetric then the result will also be symmetric and will be equal to the result of
jax.numpy.convolve.>>> x1 = jnp.array([1, 2, 3, 2, 1]) >>> y1 = jnp.array([4, 5, 4]) >>> jnp.correlate(x1, y1, mode='full') Array([ 4., 13., 26., 31., 26., 13., 4.], dtype=float32) >>> jnp.convolve(x1, y1, mode='full') Array([ 4., 13., 26., 31., 26., 13., 4.], dtype=float32)
For complex-valued inputs:
>>> x2 = jnp.array([3+1j, 2, 2-3j]) >>> y2 = jnp.array([4, 2-5j, 1]) >>> jnp.correlate(x2, y2, mode='full') Array([ 3. +1.j, 3.+17.j, 18.+11.j, 27. +4.j, 8.-12.j], dtype=complex64)